Near Detector Studies

NOvA Collaboration Meeting May 15, 2004 Debbie Harris

Appearance Probability Measurements

$$N_{far} = \phi_{\nu_{\mu}} \sigma_{\nu_{x}} P(\nu_{\mu} \to \nu_{x}) \varepsilon_{x} M_{far} + B_{far}$$

 ϕ =flux, σ = cross section ϵ =efficiency M=mass

$$P(\nu_{\mu} \to \nu_{x}) = \frac{N_{far} - B_{far}}{\phi_{\nu_{\mu}} \sigma_{\nu_{x}} \varepsilon_{x} M_{far}}$$

 B_{far} = Backgrounds at far detector, from any flux

$$B_{far} = \sum_{i=u,e} \phi_{v_i}(P) \sigma_{v_i} \varepsilon_{ix} M_{far}$$

Cross Sections matter for Signal and Backgrounds, and indirectly for efficiencies!

Probabilities, continued

$$\left(\frac{\delta P}{P}\right)^{2} = \frac{\left(N_{far} + \left(\delta B_{far}\right)^{2}\right)}{\left(\phi_{v_{\mu}}\sigma_{v_{x}}\varepsilon_{x}M_{far}\right)^{2}} + \frac{N_{far} - B_{far}}{\left(\phi_{v_{\mu}}\sigma_{v_{x}}\varepsilon_{x}\right)^{2}} \left[\delta(\phi_{v_{\mu}}\sigma_{v_{x}}\varepsilon_{x})\right]^{2}$$

$$\left(\frac{\delta P}{P}\right)^{2} = \frac{\left(N_{far} + \left(\delta B_{far}\right)^{2}\right)}{\left(\phi_{\nu_{\mu}} \sigma_{\nu_{x}} \varepsilon_{x} M_{far}\right)^{2}} + \left(N_{far} - B_{far}\right) \left(\left[\frac{\delta \phi_{\nu_{\mu}}}{\phi_{\nu_{\mu}}}\right]^{2} + \left(\frac{\delta \sigma_{\nu_{x}}}{\sigma_{\nu_{x}}}\right)^{2} + \left(\frac{\delta \varepsilon_{\nu_{x}}}{\varepsilon_{\nu_{x}}}\right)^{2}\right)$$

2 Regimes:

$$N_{\it far} >> B_{\it far}$$

$$N_{far} \approx B_{far}$$

Problem:

Don't always know *a priori* which regime you are in

- ---depends on Δm^2 ,
- ---depends on $\sin^2 2\theta_{13}$

NOvA Event Statistics and Systematics

Process	Statistics	QE	RES	СОН	DIS
δσ/σ		20%	40%	100%	20%
Signal v_e	175 at sin ² 2θ ₁₃ =0.1	55%	35%	n/i	10%
NC	15.4	0	50%	20%	30%
$v_{\mu}CC$	3.6	0	65%	n/i	35%
Beam v_e	19.1	50%	40%	n/i	10%

For large $\sin^2 2\theta_{13}$, statistical=8% For small $\sin^2 2\theta_{13}$, statistical=16%

Assume 50kton, 5 years at $4x10^{20}$ POT, $\Delta m^2=2.5x10^{-3}$ eV²

From G.Zeller, NuFact03

NOvA Collaboration Meeting

4

Where can a NOvA Near Detector Go?

- NOvA Near Detector:3.7m wide by 4.9m high,10m long, 22H, 22V planes, 120 tons
- 1m veto, 3m target, 6m "calorimeter", contains <1.5GeV muons

Why measuring $\nu_{\mu} \rightarrow \nu_{e}$ with a ND isn't trivial...

Usual statement:

Near Detector sees line source of neutrinos, far detector sees point source:

Peak is narrower at FD High Energy tail is lower at FD

But large $\nu\mu$ disappearance changes fluxes much more than this!

Near Detector Strategy

$$B_{far} = \sum_{i=u,e} \phi_{v_i far}(P) \sigma_{v_i} \varepsilon_{ix} M_{far}$$

Backgrounds come from several sources

$$N_{near} = \sum_{i=\mu,e} \phi_{v_i \, near} \sigma_{v_i} \varepsilon_{ix} M_{near}$$

Build near detector with same ε

$$B_{far} = N_{near} \frac{\displaystyle\sum_{i=\mu,e} \phi_{v_{i} \; far}(P) \sigma_{v_{i}} \varepsilon_{ix} M_{far}}{\displaystyle\sum_{i=\mu,e} \phi_{v_{i} \; near} \sigma_{v_{i}} \varepsilon_{ix} M_{near}}$$

Simulations better at predicting ratios absolute levels

$$B_{far} = \sum_{i=\mu,e} N_{near,i} \frac{\phi_{v_i far}}{\phi_{v_i near}} \frac{\sigma_{v_i}}{\sigma_{v_i}} \frac{\varepsilon_{ix}}{\varepsilon_{ix}} \frac{M_{far}}{M_{near}}$$

Near Detector Strategy (cont'd)

$$B_{far} = \sum_{i=\mu,e} \int dE_{v} N_{near,i} \left(\frac{\phi_{v_{i} far}(E_{v})}{\phi_{v_{i} near}(E_{v})} \right) \left(\frac{\sigma_{v_{i}}(E_{v})}{\sigma_{v_{i}}(E_{v})} \right) \left(\frac{\varepsilon_{ix}(E_{v})}{\varepsilon_{ix}(E_{v})} \right) \frac{M_{far}}{M_{near}}$$

- But ratios don't cancel everything
- Underlying problem: fluxes are different
 - Near detector: line source, far detector: point source
 - But even if that is solved, still v_{μ} CC oscillations
- All of these terms are functions of energy
 - Uncertainties in energy dependence of cross sections translate into far detector uncertainties...

Systematics Evaluation— Background Limited Case

$$B_{far} = \sum_{i=\mu,e} N_{near,i} \frac{\phi_{v_i far}}{\phi_{v_i near}} \frac{\sigma_{v_i}}{\sigma_{v_i}} \frac{\varepsilon_{ix}}{\varepsilon_{ix}} \frac{M_{far}}{M_{near}}$$

$$B_{far} = N_{near,i} \frac{\sum_{i=\mu,e}^{i=\mu,e} (\phi_{v_i far}(P)\sigma_{v_i} \mathcal{E}_{ix})}{\sum_{i=\mu,e}^{i=\mu,e} (\phi_{v_i near}\sigma_{v_i} \mathcal{E}_{ix})} \frac{M_{far}}{M_{near}}$$

$$B_{far} = N_{near,i} * R$$

How much does R change by when you change cross Sections by their errors—now and after MINER_VA

Systematics Evaluation: What if Θ_{13} is large?

Model: will have a prediction for events in Far detector, which will be a function of $\sin^2 2\Theta_{13}$

$$N_{far} = B_{far} + S_{far}$$

$$N_{far} = N_{near} * R'$$

$$R' = \frac{\sum_{i=\mu,ebeam,eSIGNAL} (\phi_{v_i far}(P)\sigma_{v_i} \varepsilon_{ix})}{\sum_{i=\mu,ebeam} (\phi_{v_i near} \sigma_{v_i} \varepsilon_{ix})} \frac{M_{far}}{M_{near}}$$

R' now depends on background and what Θ_{13} is

NOvA Systematics now, if Θ_{13} is large

Assume Energy Dependence known....

Regardless of NOvA Near Detector Location, large errors in extrapolation To far detector....

With identical near detector, cross section errors very important, since near & far detector populations are very different

Statistical error, phase 1: about 8%

NOvA Systematics for Large Θ_{13} CC cross sections measured at 5% level

Cross section uncertainties small
Now compared to statistics, and are
At the expected level of the flux
uncertainties

Statistical error, phase 1: about 8%

NOvA Systematics now, for small Θ_{13}

Moral of Story: Need Near Detector AND cross section measurements!

10

12

Off Axis Angle of Near Detector (mrad)

14

16

NOvA Systematics for small Θ_{13} NC cross sections measured at 10-20% level

NOvA uncertainties, before and after precise cross section measurements

Process	QE	RES	СОН	DIS
δσ/σ NOW (CC,NC)	20%	40%	100%	20%
δσ/σ after MINERνA (CC)	5%	5%	5%	5%
δσ/σ after MINER√A (NC)	n/a	10%	20%	5%

Before MINERvA, NOvA would be limited by cross section systematics (or be forced to have a different near detector)

NOvA Near Detector Thoughts

- NOvA needs to know cross sections for high or low values of Θ₁₃
 - Since sin²2⊕₂₃ is large, near and far event populations will be very different
 - if Θ_{13} is large, CC QE and RES cross sections important
 - if Θ_{13} is small, NC π^0 production cross sections important
- If Far Detector Backgrounds are really dominated by intrinsic v_e events (TASD), then there's much more cancellation between near and far
- Need to consider for Δm^2 analysis: do we need to contain v_{μ} CC events at the peak in ND? If so, need about 14m of near detector, not 10m!